师资队伍

教授

控制科学与工程

lshao@ustb.edu.cn

控制科学与工程系党支部书记

邵立珍

个人信息:

教育背景:

2004.07至2008.02 新西兰奥克兰大学工程科学系 博士

1999.09至2002.03 电子科技大学自动化系硕士

1995.09至1999.07 电子科技大学自动化系本科

工作履历:

2022.12 至 2023.6 英国兰卡斯特大学 访问学者

2021.7 至今 北京科技大学自动化学院 教授

2014.7 至 2015.7 英国兰卡斯特大学访问学者

2012.7 至 2021.6 北京科技大学自动化学院副教授

2009.11 至 2012.6 北京科技大学自动化学院 讲师

2008.2至 2009.2 新西兰奥克兰大学工程科学系 研究员

学术与社会兼职:

中国人工智能学会智能空天系统专业委员会委员,中国运筹学会数学规划分会理事,北京市运筹学会理事,国家自然科学基金同行评议专家;European Journal of Operational Research, INFORMS Journal on Computing, Journal of Global Optimization, Decision Support System和Optimization等国际期刊论文审稿人。

研究方向:

模式识别,数据挖掘,最优化方法及应用

依托顺德创新学院科研项目:

多目标优化理论、并行与分布式算法研究及其应用,广东省基础与应用基础研究基金自然科学基金-面上项目,2022.1.1-2024.12.31,项目负责人;

分布式绿色制造智能优化调度方法研究,北京科技大学顺德创新学院科技创新专项,2020.1.1-2021.12.31,项目负责人;

工业过程多模态数据挖掘与异常监测决策方法研究,北京科技大学顺德创新学院科技创新专项,2020.1.1-2021.12.31,项目参与人。

代表性成果:

代表性论著:

[1]. Shao L*, Miao H., Hu R., Liu H. (2023), Reachable set estimation for spacecraft relative motion based on the bang-bang principle, Chinese Journal of Aeronautics, 36(2), 229-240.

[2]. Guo J., Miao H., Shao L.* (2023), Relative Orbital Motion Control of Spacecraft Based on Multi-Objective Optimization, Aerospace, 10(2), 136.

[3]. Shao L.*, Fu C., You Y., Fu D (2021), Classification of ADHD with fMRI data and deep learning, Cognitive Neurodynamics, 15 961–974.

[4]. Löhne A., Zhao F., Shao L. (2021), On the approximation error for approximating convex bodies using multiobjective optimization, Appl. Set-Valued Anal. Optim. 3, 341-354.

[5]. Shao L.*, You Y., Du H., Fu D. (2020). Classification of ADHD with fMRI data and multi-objective optimization, Computer Methods and Programs in Biomedicine. 196, 2020, 105676,1-9.

[6]. Hu R., Shao L.*, Cong Y. (2020). A Polyhedral Approximation Method for Reachable Sets of Linear Delay Systems, IET Control Theory & Applications.14(12) 1548-1556.

[7]. Hu G, Shao L.*, Delay-Dependent Stability of Linear Multi-Step Methods for Linear Neutral Systems, Kybernetika, (2020). 56(3) 543-558. 10.14736/kyb-2020-3-0543.

[8]. Shao L.*, Zhao F, Hu G. (2019). A Numerical Method for the Approximation of Reachable Sets of Linear Control Systems, IMA Journal of Mathematical Control and Information, 36(2):423-441.

[9]. Shao L*, Xu Y., Fu D. (2018). Classification of ADHD with bi-objective optimization, Journal of Biomedical Informatics.84:164-170.

[10]. Shao L*, Zhao F., Cong Y. (2018). Approximation of Convex Bodies by Multiple Objective Optimization and an Application in Reachable Sets, Optimization, 67(6): 783-796.

[11]. Zhang Y, Shao L*, Hu G., Li, B. (2017) Approximating reachable sets of linear control system using multi-objective programming. Proceedings of the 29th Chinese Control and Decision Conference, CCDC 2017, p 1874-1877.

[12]. Shao L.* and Ehrgott M. (2016). Discrete representation of non-dominated sets in multi-objective linear programming, European Journal of Operational Research, 255(3): 687-698.

[13]. Shao L.* and Ehrgott M. (2016). Primal and dual multi-objective linear programming algorithms for linear multiplicative programmes, Optimization, 65(2):415-431.

[14]. Shao L.* and Ehrgott M. (2014). An objective space cut and bound algorithm for convex multiplicative programmes. Journal of Global Optimization. 58(4):711-728.

[15]. Ehrgott M., Loehne A., and Shao L.* (2012). A Dual Variant of Benson’s “Outer Approximation Algorithm” for Multiple Objective Linear Programming. Journal of Global Optimization. 52(4):757-778.

[16]. Ehrgott M., Shao L.* and Schobel A. (2011). An Approximation Algorithm for Convex Multi-objective Programming Problems. Journal of Global Optimization. 50(3):397-416.

[17]. Ehrgott M., Guler C., Hamacher H. W. and Shao L*. (2010). Mathematical optimization in intensity modulated radiation therapy. Annals of Operations Research 175: 309-365.

[18]. Shao L (2010). Multiobjective Optimization in IMRT Treatment Planning, Lambert Academic Publishing.

[19]. Shao L.* and Ehrgott M. (2008). Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning, Mathematical Methods of Operations Research, 68: 257-276.

[20]. Shao L.* and Ehrgott M (2008). Approximating the nondominated set of an MOLP by approximately solving its dual problem, Mathematical Methods of Operations Research, 68: 469-492.

代表性项目:

国家自然科学基金面上项目(项目编号:12071025),2021.01-2024.12,项目负责人

广东省基础与应用基础研究基金自然科学基金-面上项目(项目编号:2022A1515011172),2022.1-2024.12,项目负责人

北京市自然科学基金(项目编号:4152034),2015.01-2017.12,项目负责人

国家“863”计划(项目编号:2013AA040705),2013.01-2015.12,项目参加人

国家自然科学基金青年基金项目(项目编号:81000650),2011.01-2013.12,项目负责人

教育部博士点基金(项目编号:20100006120016),2012.01-2013.12,项目负责人

教育部留学归国人员科研启动基金(第43批),2011.12-2014.12,项目负责人

获得荣誉:

2021年,北京科技大学优秀硕士学位论文指导教师